YamahaSynth.com Forums

This is the place to talk about all things related to Yamaha Synthesizers!
  1. Shawn
  2. Sherlock Holmes The Voice
  3. MONTAGE Series Synthesizers
  4. Wednesday, 17 June 2020
The following is a list of normalized levels produced by a velocity “Level/Vel” of 32, offset of 0, and curve of 3:


0.00006109667016452,	// 1 0.00787401574803150 Factor: 128.87798511487434894
0.00024421929252065, // 2 0.01574803149606299 Factor: 64.48315910476921431
0.00053246166518723, // 3 0.02362204724409449 Factor: 44.36384586632738092
0.00097654239380771, // 4 0.03149606299212598 Factor: 32.25263254503197174
0.00150582368438364, // 5 0.03937007874015748 Factor: 26.14521152008066807
0.00222391879398856, // 6 0.04724409448818898 Factor: 21.24362392003423139
0.00301164736876728, // 7 0.05511811023622047 Factor: 18.30164806405646871
0.00390616957523084, // 8 0.06299212598425197 Factor: 16.12631627251598587
0.00485040605851320, // 9 0.07086614173228346 Factor: 14.61035238645692047
0.00602346212567200, // 10 0.07874015748031496 Factor: 13.07224248073617723
0.00748057586206146, // 11 0.08661417322834646 Factor: 11.57854352732648096
0.00889584256409166, // 12 0.09448818897637795 Factor: 10.62161209527048022
0.01013183657092679, // 13 0.10236220472440945 Factor: 10.10302564671609815
0.01204675686320656, // 14 0.11023622047244094 Factor: 9.15069688250507696
0.01372147517826418, // 15 0.11811023622047244 Factor: 8.60769229882568787
0.01562501307719824, // 16 0.12598425196850394 Factor: 8.06298537774372903
0.01779168512818332, // 17 0.13385826771653545 Factor: 7.52364190081659068
0.01940162423405281, // 18 0.14173228346456693 Factor: 7.30517619322846024
0.02209473197727739, // 19 0.14960629921259844 Factor: 6.77112984970608167
0.02409368111455057, // 20 0.15748031496062992 Factor: 6.53616664933466751
0.02744295035652836, // 21 0.16535433070866143 Factor: 6.02538460917798258
0.02992247083638329, // 22 0.17322834645669291 Factor: 5.78923937812185496
0.03263851075443674, // 23 0.18110236220472442 Factor: 5.54873240287491054
0.03558353764450409, // 24 0.18897637795275590 Factor: 5.31078106512952353
0.03880308107996817, // 25 0.19685039370078741 Factor: 5.07306090707343582
0.04232794047811744, // 26 0.20472440944881889 Factor: 4.83662581113901968
0.04418946395455479, // 27 0.21259842519685040 Factor: 4.81106594584379454
0.04818719484096369, // 28 0.22047244094488189 Factor: 4.57533254783819388
0.05255133836022229, // 29 0.22834645669291340 Factor: 4.34520725481191228
0.05488590071305673, // 30 0.23622047244094488 Factor: 4.30384614941284394
0.05984494167276657, // 31 0.24409448818897639 Factor: 4.07878228913130680
0.06250005230879295, // 32 0.25196850393700787 Factor: 4.03149268887186452
0.06814571940826954, // 33 0.25984251968503935 Factor: 3.81304243232491658
0.07116690790087074, // 34 0.26771653543307089 Factor: 3.76181210241670927
0.07431028973380097, // 35 0.27559055118110237 Factor: 3.70864589773960418
0.08105469256741432, // 36 0.28346456692913385 Factor: 3.49720118540172642
0.08465571356809742, // 37 0.29133858267716534 Factor: 3.44145209339959468
0.08837892790910958, // 38 0.29921259842519687 Factor: 3.38556492485304084
0.09231572951349140, // 39 0.30708661417322836 Factor: 3.32648201765387608
0.09637455707006483, // 40 0.31496062992125984 Factor: 3.26808900083744858
0.10510250933230714, // 41 0.32283464566929132 Factor: 3.07161691685753269
0.10977180142611345, // 42 0.33070866141732286 Factor: 3.01269230458899129
0.11462404875413847, // 43 0.33858267716535434 Factor: 2.95385375796307237
0.11968988334553314, // 44 0.34645669291338582 Factor: 2.89461968906092748
0.12499993722944847, // 45 0.35433070866141730 Factor: 2.83464709275022964
0.13055421040588444, // 46 0.36220472440944884 Factor: 2.77436264432512925
0.13629143881653907, // 47 0.37007874015748032 Factor: 2.71534839877683476
0.14233398318987892, // 48 0.37795275590551181 Factor: 2.65539365536695859
0.14862057946760193, // 49 0.38582677165354329 Factor: 2.59605212841772248
0.15521232431987270, // 50 0.39370078740157483 Factor: 2.53653045353671791
0.16210938513482864, // 51 0.40157480314960631 Factor: 2.47718417299288962
0.16931142713619485, // 52 0.40944881889763779 Factor: 2.41831768725376905
0.17675785581821915, // 53 0.41732283464566927 Factor: 2.36098606601593630
0.17675785581821915, // 54 0.42519685039370081 Factor: 2.40553297292189727
0.18463129163884537, // 55 0.43307086614173229 Factor: 2.34559842103502181
0.19274894675199222, // 56 0.44094488188976377 Factor: 2.28766428725093007
0.20129394378001583, // 57 0.44881889763779526 Factor: 2.22966915551263245
0.21020501866461427, // 58 0.45669291338582679 Factor: 2.17260708753337717
0.21020501866461427, // 59 0.46456692913385828 Factor: 2.21006583042188343
0.21954343546408947, // 60 0.47244094488188976 Factor: 2.15192471541316710
0.22924809750827693, // 61 0.48031496062992124 Factor: 2.09517533995055105
0.23937993407920372, // 62 0.48818897637795278 Factor: 2.03938971850675488
0.25000004184703434, // 63 0.49606299212598426 Factor: 1.98425163636375168
0.25000004184703434, // 64 0.50393700787401574 Factor: 2.01574769408381105
0.26110842081176888, // 65 0.51181102362204722 Factor: 1.96014752044710194
0.27258304502121561, // 66 0.51968503937007871 Factor: 1.90652004540352360
0.27258304502121561, // 67 0.52755905511811019 Factor: 1.93540671275812248
0.28466796637975783, // 68 0.53543307086614178 Factor: 1.88090383921826243
0.29724115893520386, // 69 0.54330708661417326 Factor: 1.82783262102880495
0.29724115893520386, // 70 0.55118110236220474 Factor: 1.85432294886980209
0.31042481602788285, // 71 0.55905511811023623 Factor: 1.80093565090498764
0.32421877026965729, // 72 0.56692913385826771 Factor: 1.74860059270086321
0.32421877026965729, // 73 0.57480314960629919 Factor: 1.77288671204393067
0.33862302166052716, // 74 0.58267716535433067 Factor: 1.72072519611047037
0.35351554424830089, // 75 0.59055118110236215 Factor: 1.67050979995259574
0.35351554424830089, // 76 0.59842519685039375 Factor: 1.69278326395196399
0.36926275066582814, // 77 0.60629921259842523 Factor: 1.64191815043675526
0.36926275066582814, // 78 0.61417322834645671 Factor: 1.66324176278008973
0.38549806089212185, // 79 0.62204724409448819 Factor: 1.61361964481726017
0.40258788756003167, // 80 0.62992125984251968 Factor: 1.56468010913167199
0.40258788756003167, // 81 0.63779527559055116 Factor: 1.58423861049581793
0.42041020471736595, // 82 0.64566929133858264 Factor: 1.53580784694000050
0.42041020471736595, // 83 0.65354330708661412 Factor: 1.55453721092707364
0.43908687092817894, // 84 0.66141732283464572 Factor: 1.50634730078921719
0.43908687092817894, // 85 0.66929133858267720 Factor: 1.52428000675099340
0.45849602762841640, // 86 0.67716535433070868 Factor: 1.47692741817931439
0.45849602762841640, // 87 0.68503937007874016 Factor: 1.49410099280930653
0.47875970077026997, // 88 0.69291338582677164 Factor: 1.44730933850938737
0.49999991630593127, // 89 0.70078740157480313 Factor: 1.40157503775664138
0.49999991630593127, // 90 0.70866141732283461 Factor: 1.41732307188873841
0.52221684162353776, // 91 0.71653543307086609 Factor: 1.37210326431297136
0.52221684162353776, // 92 0.72440944881889768 Factor: 1.38718132216256462
0.54516592265429376, // 93 0.73228346456692917 Factor: 1.34323044441516259
0.54516592265429376, // 94 0.74015748031496065 Factor: 1.35767378252715365
0.56933593275951566, // 95 0.74803149606299213 Factor: 1.31386665239510969
0.56933593275951566, // 96 0.75590551181102361 Factor: 1.32769682768347930
0.59448231787040773, // 97 0.76377952755905509 Factor: 1.28478090028836278
0.59448231787040773, // 98 0.77165354330708658 Factor: 1.29802606420886124
0.59448231787040773, // 99 0.77952755905511806 Factor: 1.31127122812935992
0.62084963205576571, // 100 0.78740157480314965 Factor: 1.26826454289083634
0.62084963205576571, // 101 0.79527559055118113 Factor: 1.28094718831974475
0.64843754053931457, // 102 0.80314960629921262 Factor: 1.23859208649644481
0.64843754053931457, // 103 0.81102362204724410 Factor: 1.25073514616797854
0.67724604332105431, // 104 0.81889763779527558 Factor: 1.20915824591546572
0.67724604332105431, // 105 0.82677165354330706 Factor: 1.22078476751080678
0.70703125588473925, // 106 0.83464566929133854 Factor: 1.18049331248716838
0.70703125588473925, // 107 0.84251968503937003 Factor: 1.19163004185025478
0.70703125588473925, // 108 0.85039370078740162 Factor: 1.20276677121334141
0.73852533394351894, // 109 0.85826771653543310 Factor: 1.16213713611220792
0.73852533394351894, // 110 0.86614173228346458 Factor: 1.17279894470039325
0.77099612178424370, // 111 0.87401574803149606 Factor: 1.13361886439693582
0.77099612178424370, // 112 0.88188976377952755 Factor: 1.14383164695907058
0.80517577512006333, // 113 0.88976377952755903 Factor: 1.10505532707424337
0.80517577512006333, // 114 0.89763779527559051 Factor: 1.11483457775631623
0.80517577512006333, // 115 0.90551181102362199 Factor: 1.12461382843838931
0.84082024204659445, // 116 0.91338582677165359 Factor: 1.08630332750842351
0.84082024204659445, // 117 0.92125984251968507 Factor: 1.09566801136625469
0.87817374185635788, // 118 0.92913385826771655 Factor: 1.05802965174480712
0.87817374185635788, // 119 0.93700787401574803 Factor: 1.06699600472569545
0.87817374185635788, // 120 0.94488188976377951 Factor: 1.07596235770658355
0.91699205525683281, // 121 0.95275590551181100 Factor: 1.03900126511451774
0.91699205525683281, // 122 0.96062992125984248 Factor: 1.04758805242951358
0.95751940154053994, // 123 0.96850393700787396 Factor: 1.01147186725371951
0.95751940154053994, // 124 0.97637795275590555 Factor: 1.01969521576797750
0.95751940154053994, // 125 0.98425196850393704 Factor: 1.02791856428223527
1.00000000000000000, // 126 0.99212598425196852 Factor: 0.99212598425196852
1.00000000000000000, // 127 1.00000000000000000 Factor: 1.00000000000000000

Only the left-most value is relevant here, and the integer following “// ” is the velocity that produced the given level.

Why are so many levels simply duplicated? This same table is used regardless of the offset and Level/Vel settings; if offset is 1 then simply move all the levels up 1 line in the list, remove the top 0.00006109667016452, and insert another 1.00000000000000000 at the bottom. If Level/Vel is 33, simply remove the 0.00006109667016452 at the top (note velocity 1 produces no sound).

So basically the Yamaha MONTAGE has this internal table of velocity mappings that is referenced when you press a key.
Why do any of the levels have to be duplicates? Why wouldn’t one just use 127 unique values? This is such a waste of velocity levels.


The levels after the velocity integer (0.00787401574803150 on the first line) are the levels I actually want it to generate.
These levels are simply a linear mapping from 1/127 (= 0.00787401574803150) to 127/127(= 1.00000000000000000).


  1. Can we get an update that actually uses all 127 levels, regardless of the curve? All curves have these same redundancies, wasting a lot of the available note-velocity resolution.
  2. Can we get an update that provides a linear curve? These numbers were generated using curve #3, which is the roundest curve on the system, yet in reality it is just a slightly linearized exponential curve.
  3. Curve3.png
    Curve #2, which is displayed as a linear image on the machine, is actually a completely exponential curve, except with a bunch of duplicate values as above.
    Can we get curve #5, such that it actually is truly linear (the values in my table can be used as a reference)?



Thank you,
Anne
Attachments (1)
Responses (0)


There are no replies made for this post yet.
Be one of the first to reply to this post!
2021 © Yamaha Corporation of America and Yamaha Corporation. All rights reserved.